Апоптоз

(А) Нормальные раковые клетки и (B) клетки с апоптичнои морофологиею. Клеточная линия-SK-OV-3 (аденокарциномы яичников человека), индуктор апоптоза-белок scFV 4D5-дибарназа, фазовоконтрастна микроскопия, увеличение 400х) [1]
Неполное разделение пальцев ног из-за нарушения апоптоза

Апоптоз (от дав.-гр. απόπτωσις - Опадение) - наиболее распространенный тип запрограммированной клеточной смерти. Другими словами - это совокупность клеточных процессов, приводящих к гибели клетки. В отличие от другого вида клеточной смерти - некроза - при апоптозе не происходит разрушения цитоплазматической клеточной мембраны и, соответственно, содержимое клетки не попадает во внеклеточную среду. Характерным признаком является фрагментация ДНК в мижнуклеосомальних участках специфической ендонуклезою - CAD (caspase activated DNase) на фрагменты размером, кратным 180-200 нуклеотидам. В результате апоптоза происходит образование апоптичних телец - мембранных везикул, содержащих целостные органеллы и фрагменты ядерного хроматина. Эти тельца поглощаются соседними клетками или макрофагами в результате фагоцитоза. Так как внеклеточный матрикс не поражается клеточными ферментами, даже при большом количестве апоптозных клеток, воспаление не наблюдается.

Процесс апоптоза является необходимым для физиологического регулирования количества клеток организма, для уничтожения старых клеток, для формирования лимфоцитов, которые не являются реактивными к своим антигенов (аутоантигенов), для осеннего опадения листьев растений, для цитотоксического действия Т-лимфоцитов киллеров, для эмбрионального развития организма (исчезновение кожных перепонок между пальцами у эмбрионов птиц) и других.

Нарушение нормального апоптоза клеток приводит к неконтролируемому размножению клетки и появления опухоли.


1. Значение апоптоза

Апоптоз - неотъемлемая часть жизнедеятельности большинства многоклеточных организмов. Особенно важную роль он играет в процессах развития. Например конечности четвероногих закладываются как лопатообразные вырасти, а формирование пальцев происходит благодаря гибели клеток между ними. Также подлежат апоптоза больше не нужны клетки, таким образом частности разрушается хвост у головастиков при метаморфозу. В нервной ткани позвоночных во время эмбрионального развития более половины нейронов погибают путем апоптоза сразу же после образования [2].

Также апоптоз является частью системы контроля за "качеством" клеток, он позволяет разрушать те из них, которые неправильно расположены, поврежденные, нефункциональные или потенциально опасные для организма. Примером могут служить T- и B-лимфоциты, которые погибают, если не несут полезных антиген -специфических рецепторов или несут автореактивни. Путем апоптоза также умирает большинство лимфоцитов аткивованих при инфекции после его преодоления [2].

У взрослых организмов одновременная регуляция пролиферации клеток и апоптоза позволяет поддерживать стали размеры целой особи и ее отдельных органов. Например, после вживавання препарата фенобарбитал, что стимулирует пролиферацию гепатоцитов, у крыс увеличивается печень. Однако, сразу же после прекращения действия этого вещества все лишние клетки подлежат апоптоза, в результате чего размер печени возвращается к нормальному [3].

Также апоптоз происходит, когда клетка "чувствует" большое количество внутренних повреждений, которые она не может репаруваты. Например, в случае повреждения ДНК клетка может трансформироваться в раковую, чтобы этого не произошло она, при нормальных условиях, "кончает жизнь самоубийством". Также погибает путем апоптоза большое количество клеток инфицированных вирусами [3].


2. Маркеры апоптических клеток

Маркеры апоптоза

Выявление фрагментации ДНК в апоптичних клетках методом TUNEL Препарат ткани печени мыши, ядро апоптичнои клетки имеет коричневую окраску, оптическая микроскопия.
Выявление фрагментации ДНК в апоптичних клетках с помощью электрофореза в агарозном геле. Слева: ДНК выделенной из апоптических клеток - видно "лесенку ДНК"; посередине: маркеры; дело: контрольный образец ДНК из необработанных клеток. Клеточная линия H4IIE (гепатома крыс), индуктором апоптоза - паракват, визуализация с помощью етидий бромида.
Сверху: выявление конденсации и фрагментации хроматина путем закрашивания флуоресцентным красителем (Hoechst 34580). Посередине: выявление транслокации фосфадидилсерину в наружный листок плазмалемме путем закрашивания аннексином V. Снизу: Микрофотография апоптических клеток в светлом поле. Клеточная линия - Jurkat, индуктор апоптоза - TRAIL, конфокальной и свитлопильна оптическая микроскопия [4].

Клетки, погибают путем апоптоза, можно распознать по ряду морфологических признаков. Они становятся меньше и более плотными (пикноз), округляются и теряют псевдоподии, в них разрушается цитоскелет, распадается ядерная мембрана, хроматин конденсируется и фрагментируется. На поверхности клеток появляется большое количество пузырьков, если клетки достаточно велики, то они распадаются на окружены мембранами фрагменты - апоптические тельца [5] [6].

В апоптичних клетках кроме морфологических происходит также большое количество биохимических изменений. Частности ДНК разрезается специальными нуклеазами в линкерних участках между нуклеосомы на фрагменты равной длины. Поэтому при разделении всей ДНК апоптичнои клетки с помощью электрофореза можно наблюдать характерную "лесенку". Другой метод выявления фрагментации ДНК - метки ее свободных концов с помощью метода TUNEL ( T erminal deoxynucleotidyl transferase d U TP n ick e nd l abeling ) [3].

Изменения претерпевает также и плазматическая мембрана апоптичних клеток. При нормальных условиях отрицательно заряженный фосфолипид фосфатидилсерин содержится только в ее внутреннем (возвращенном к цитозоля) слое, однако во время апоптоза он "перескакивает" в наружный листок. Эта молекула служит сигналом "съешь меня" для ближних фагоцитов. Фосфатидилсерин-индуцированное поглощение апоптических клеток, в отличие от других типов фагоцитоза, не приводит к выделению медиаторов воспаление. Описанная изменение плазмалемме лежит в основе еще ​​одного метода выявления клеток, погибающих путем апоптоза - окрашивание анексином V, специфически связывается с фосфатидилсерина [3].

Во время гибели клеток путем апоптоза они также теряют электрический потенциал, что при нормальных условиях существует на внутренних мембранах митохондрий. Это явление можно использовать для выявления апоптичних клеток с помощью положительно заряженных флуоресцентных красителей, в норме накапливаются внутри митохондрий благодаря негативному заряда на внутренней поверхности их внутренних мембран. Во время апоптоза уровень окрашивания митохондрий существенно снижается. Маркером апоптоза также служит высвобождение цитохрома c из митохондрий в цитозоль [7].


3. Каспаз - медиаторы апоптоза

Клеточные системы, которые обеспечивают прохождение апоптоза, аналогичные у всех животных, центральное место в них занимает семья белков каспаз. Каспаз - это протеазы, имеющие в активном центре остаток цистеина, и разрезают свои субстраты по специфическому остатка аспарагиновой кислоты (отсюда название: c от cysteine и asp от aspartic acid ). Каспазы синтезируются в клетке в виде неактивных прокаспаз, которые могут становиться субстратами для других, уже активированных каспаз, что режут их в одном или двух местах по остатку аспартата. Два образованы фрагменты - больший и меньший - соединяются между собой, формируя димер, что ассоциирует с таким же диммером. Сформированный таким образом тетрамер и является активной протеазой, что может разрезать белки-субстраты. Кроме участков, соответствующих большей и меньшей субъединиц, прокаспазы иногда также содержат ингибиторные продомены, которые деградируют после отщепления [7].

В результате расщепления и активации одних каспаз другими формируется протеалитичний каскад, который существенно усиливает сигнал и делает апоптоз с определенного момента необратимым процессом. Те прокаспазы, которые начинают этот каскад называются инициаторным, а их сусбтраты - эффекторными. После аткивации эффекторные каспазы могут расщеплять другие эффекторные прокаспазы или белки-мишени. До мишеней эффекторных каспаз, которые разрушаются во время апоптоза относятся в частности белки ядерной ламины, розщелення которых приводит к распаду этой структуры. Также деградирует белок, при нормальных условиях подавляет эндонуклеазы CAD, вследствие этого начинается фрагментация ДНК. Расщепляются каспаз и белки цитоскелета и межклеточной адгезии, вследствие чего апоптические клетки округляются и отсоединяются от соседних клеток, и таким образом становятся легче мишенью для фагоцитов [8].

Набор каспаз, необходимый для прохождения апоптоза зависит от типа ткани и пути, по которому активируется клеточная смерть. Например у мышей при "выключении" гена, кодирующие эффекторные каспазы-3, апоптоз не происходит в мозге, однако нормально протекающей в других тканях [8].

Гены прокаспаз активны в здоровых клетках, а следовательно белки необходимы для протекания апоптоза постоянно присутствующие, нужна лишь их активация для запуска клеточного суицида. В состав инициаторных прокаспаз входит длинный продомен, содержащий CARD ( caspase recruitment domain , Домен привлечения каспаз). CARD позволяет инициаторным прокаспазы присоединяться к адаптерных белков образуя активационные комплексы, когда клетка получает сигнал, что стимулирует апоптоз. В активационных комплексах несколько молекул прокаспаз оказываются непосредственно вблизи друг друга, чего достаточно для их перехода в активное состояние, после чего они разрезают друг друга [8].

Два лучше изучены сигнальные пути активации каскада каспаз в клетках млекопитающих называются внешний и внутренний (митохондриальный), каждый из них использует собственные инициаторным прокаспазы [8].


4. Пути активации апоптоза

4.1. Внешний путь

Клетка может получать сигнал, индуцирующего апоптоз, извне, например, от цитотоксических лимфоцитов. В таком случае активируется так называемый внешний путь ( extrinsic pathway ), Начинающийся с рецепторов смерти. Рецепторы смерти - это трансмембранные белки, принадлежащие к семейству рецепторов фактора некроза опухолей (ФНО), например сам рецептор ФНО и рецептор смерти Fas. Они формируют гомотримеры, в которых каждый мономер имеет внеклеточный лиганд-Связной домен, трансмембранный домен и цитоплазматический домен смерти, через адаптерные белки привлекает и активирует прокаспазы [9].

Лиганды рецепторов смерти также гомотримерамы. Они родственны между собой и принадлежат к семейству сигнальных молекул фактора некроза опухолей. Например, цитотоксические лимфоциты несут на своей поверхности лиганды Fas, которые могут присоединяться к рецепторам смерти Fas на плазмалемме клеток-мишеней. В таком случае внутриклеточные домены этих рецепторов соединяются с адаптерного белка ( FADD, Fas-associated death domain ), А те в свою очередь привлекают инициаторным прокаспазы 8 и / или 10. Вследствие этой серии событий формируется сигнальный комплекс, индуцирующего смерть, - DISC ( death inducing signaling complex ). После активации в этом комплексе инициаторным каспазы разрезают эффекторные прокаспазы и запускают апоптичнои каскад [9].

Многие клетки синтезируют молекулы, в определенной степени защищают их от активации внешнего пути апоптоза. Примером такой защиты может быть экспрессия так называемых рецепторов-приманок ( decoy receptors ), Имеющих внеклеточные домены связывания лигандов, однако не цитоплазматических доменов сметри, а следовательно не могут запускать апоптоза и конкурируют с обычными рецепторами смерти за лиганды. Клетки также могут продуцировать белки, блокирующие внешний путь апоптоза, например FLIP, похожий по структуре прокаспаз 8 и 10, однако не протеалитичнои активности. Он подавляет связывание инициаторных прокаспаз с комплексом DISC [9].


4.2. Внутренний путь

Апоптосома

Апоптоз также может запускаться изнутри клетки, например в случае ее травмирования, повреждения ДНК, недостатка кислорода, питательных веществ или внеклеточных сигналов выживания. У позвоночных этот сигнальный путь называется внутренним ( intrinsic pathway ) Или митохондриальной, ключевым событием в нем является высвобождение определенных молекул с межмембранном пространстве митохондрий. До таких молекул зокрема належить цитхром c, що за звичайних умов входить до електрон-транспортного ланцюга мітохондрій, проте у цитоплазмі виконує іншу функцію - приєднується до адаптерного білка Apaf ( apoptotic protease actiuating factor-l ), Вызывая его олигомеризации в колесоподибну семичленну структуру, которая называется апоптосома. Апоптосома привлекает и активирует инициаторным прокаспазу-9, которая затем может активировать инициаторным прокаспазы [10].

В некоторых клетках внешний путь апоптоза должен активировать внутренний для того чтобы эффективно уничтожить клетку. Внутренний путь строго регулируется белками семьи Bcl-2 [10].


4.2.1. Регуляция внутреннего пути белками семьи Bcl-2

К семейству Bcl-2 относятся эволюционно консервативны белки, главной функцией которых является регуляция высвобождения цитохрома c и других молекул с мижмебранного пространства митохондрий. Среди них есть про-апоптические и анти-апоптические молекулы, которые могут взаимодействовать между собой в различных комбинациях, подавляя друг друга, баланс между их активностью и определять судьбу клетки [11].

Сейчас известно около 20 белков из этой семьи, все они содержат хотя бы один из четырех альфа-спиральных доменов гомологии Bcl2, называемых BH1-4 ( bcl2 homology ). Антиапоптични белки семьи Bcl2 содержат все четыре домены, к ним относятся сам Bcl-2, а также Bcl-X L, Bcl-w, Mcl-1 и A1. Проапоптични белки делятся на две группы, члены первой из которых содержат три BH-домены (BH1-3), это в частности Bak, Bax и Bok (последний экспрессируется только в тканях репродуктивных органов). Наиболее многочисленной среди семьи Bcl-2 является вторая группа проапоптичних белков, которые содержат только домен BH3 (BH3-only), к ней относятся Bim, Bid, Bad, Bik / Nbk, Bmf, Nix/BNIP3, Hrk, Noxa, Puma [12 ].

При нормальных условиях (т.е. когда клетка не проходит апоптоза) антиапоптични белки, такие как Bcl-2 и Bcl-X L, связываются с проапоптичнимы белками BH123 (Bax и Bak) и не позволяют им полимеризоваться во внешней мембране митохондрий образуя поры. В результате действия определенного апоптичнои стимула в клетке активируются или начинают синтезироваться проапоптични белки, содержащие только домен BH3. Они в свою очередь ингибируют антиапоптични белки, снимая угнетающее действие на Bak и Bax, либо напрямую взаимодействуют с последними и способствуют их олигомеризации и образованию пор. Вследствие пермеабилизации наружной мембраны в цитозоль попадает цитохром c [11], а также другие медиаторы апоптоза, такие как AIF ( англ. apoptosis inducing factor ).

Например, при недостатке сигналов выживания в клетке при посредничестве MAP-киназы JNK активируется экспрессия BH3 белка Bim, запускающий внутренний путь апоптоза. В случае повреждения ДНК происходит накопление супрессора опухолей p53, который стимулирует транскрипцию генов, кодирующих BH3 белки Puma и Noxa, которые также обеспечивают прохождение апоптоза. Еще один BH3 белок - Bid обеспечивает связь между внешним и внутренним путями апоптоза. После активации рецепторов смерти и, как следствие, каспазы-8, последняя разрезает Bid с образованием усеченной формы tBid (truncated Bid), которая перемещается в митохонрий, где подавляет Bcl-2 [13].


Примечания

  1. Edelweiss E, Balandin TG, Ivanova JL, Lutsenko GV, Leonova OG, Popenko VI, Sapozhnikov AM, Deyev SM Barnase as a new therapeutic agent triggering apoptosis in human cancer cells / / PLoS One. - Т. 18. - (2008). DOI : 10.1371/journal.pone.0002434 - dx.doi.org/10.1371/journal.pone.0002434. PMID 18560598 - www.ncbi.nlm.nih.gov/pubmed/18560598 .
  2. а б Alberts et al, 2007, p. 1116
  3. а б в г Alberts et al, 2007, p. 1117
  4. Stepanek O, Brdicka T, Angelisova P, Horvath O, Spicka J, et al. Interaction of Late Apoptotic and Necrotic Cells with Vitronectin / / PLoS One. - Т. 4. - (2011). DOI : 10.1371/journal.pone.0019243 - dx.doi.org/10.1371/journal.pone.0019243. PMID 21573223 - www.ncbi.nlm.nih.gov/pubmed/21573223 .
  5. Alberts et al, 2007, p. 1115
  6. Kroemer G, Galluzzi L, ET Al Classification Of Cell Death: recommendations of the Nomenclature Committee on Cell Death 2009 - www.ncbi.nlm.nih.gov/pmc/articles/PMC2744427/ / / Cell Death Differ. - Т. 16. - (2009) С. 3-11. PMID 18846107 - www.ncbi.nlm.nih.gov/pubmed/18846107 .
  7. а б Alberts et al, 2007, p. 1118
  8. а б в г Alberts et al, 2007, p. 1119
  9. а б в Alberts et al, 2007, p. 1120
  10. а б Alberts et al, 2007, p. 1121
  11. а б Alberts et al, 2007, p. 1122
  12. Szegezdi E, Macdonald DC, N? Chonghaile T, Gupta S, Samali A Bcl-2 family on guard at the ER / / Am J Physiol Cell Physiol. - Т. 296. - (2009) С. C941-53. DOI : 10. 1152 / ajpcell. 00612 - dx.doi.org/10. 1152 / ajpcell. 00612. PMID 19279228 - www.ncbi.nlm.nih.gov/pubmed/19279228 .
  13. Alberts et al, 2007, p. 1123-1124