Надо Знать

добавить знаний



Грибы


По часовой стрелке слева: Мухомор (Amanita muscaria), Саркосцифа (Sarcoscypha coccinea), Ризопус чернеющий (Rhisopus nigricans), Хитридиомикотовий гриб (Chytridiomycota), Пеницилиум (Penicillium)

План:


Введение

Грибы ( лат. Fungi ) - царство эукариотических безхлорофильних гетеротрофных организмов, которые питаются преимущественно осмотрофно, большинство из которых способны размножаться с помощью спор (хотя некоторые потеряли эту возможность и размножаются вегетативно). Большинство из них в течение всей жизни или на определенных стадиях развития имеют мицелиальные устройство, а некоторые - дрожжи - одноклеточные. Сегодня описано около 70 тыс. видов грибов [2], однако их ожидаемое многообразие, по оценкам разных авторов, составляет от 300 тыс. до 1,5 млн. видов [3] [4].

Хотя грибы преимущественно растут в почвах, они также распространены в большинстве типов биотопов - морях, континентальных водоемах. Они развиваются на различных природных субстратах растительного и животного происхождения, искусственных материалах, созданных человеком. Среди грибов известны сапротрофы, симбионты и паразиты растений и животных, в том числе человека. Плодовые тела (спорокарпы) некоторых грибов употребляются в пищу ( белый гриб, шампиньон, лисички, сыроежка, грифола, трюфель т.д.).

Относительно систематики грибов, то до сих пор ведутся ожесточенные споры в кругу специалистов, которые предлагают различные подходы - от морфологического к генетическому. Согласно системе грибов в различных микологических школ выходят существенно отличаются. Окончательного - такой, которая бы удовлетворяла все стороны дискуссии, - на сегодняшний день не существует. Ученые достигли единства только в одном вопросе - это распределении грибов на собственно грибы и грибовидные организмы. По принятой в Украине системой грибы делятся на 10 отделов: Акразиомикотови слизевики ( Acrasiomycota) Миксомикотови слизевики ( Myxomycota) Оомикотови грибы ( Oomycota) Лабиринтуломикотови грибы ( Labyrinthulomycota) Гифохитриомикотови грибы ( Hyphochytriomycota), Плазмодиофоромикотови слизевиков (Plasmodiophoromycota), Хитридиомикотови грибы (Chytridiomycota), Зигомикотови грибы (Zygomycota), Аскомицеты ( Ascomycota) Базидиомикотови грибы ( Basidiomycota) и систематизировано группу Анаморфних грибов ( Deuteromycetes) и группу Лихенизовани грибы, или Лишайники ( Lichenes) [5]

В быту грибом часто называют спорокарп (плодовое тело) высших грибов, имеет ножку и спороносную шапку с радиальными пластинами или трубками. Также, в быту употребляется название грибок для обозначения микроскопических плесневых грибов. Обе эти названия считаются с научной точки зрения и не соответствуют научному определению этой группы биоты.


1. Отличие грибов от растений и животных

Грибы и спорангии ризопусу чернеющей (Rhisopus nigricans) на питательной среде в чашке Петри
Колония паразитического гриба мадурелы серой (Madurella cinerea) на питательной среде в чашке Петри. Этот гриб поселяется в трещинах кожи человека.
Муха поражена паразитическим грибом ентомофторою муховою (Entomophthora muscae)
Плазмодиокарп миксомикотових слизевиков (Myxomycota) может образовываться на любой поверхности, в том числе и на коробке из-под пива
Лосось поражен сапролегнией паразитической (Saprolegnia parasitica) (светло-розовые пятна)
Разрез через плодовое тело трюфеля (Tuber albidum)

От растений грибы отличаются, в первую очередь, отсутствием фотосинтетического аппарата, наличием хитиновой клеточной стенки, образование мочевины в процессе метаболизма, животный путь синтеза аминокислот, запасания гликогена и т.д., от животных - преобладанием осмотрофного типа питания над фаготрофним, размножением с помощью спор и наличием клеточных стенок. Однако эти видминости грибов от животных не являются универсальными. Например, к организмам, которые по названиям признаются Международным кодексом ботанической номенклатуры (МКБН) грибами, относятся миксомикотови слизевики. Они лишены клеточных стенок и способны к фаготрофного питания (хотя размножаются с помощью спор). Кроме того, среди грибов, питающихся осмотрофно, выделяются отделы, которые происходят от гетеротрофных предков (т.н. настоящие грибы - Chytridiomycota, Zygomycota, Ascomycota, Basidiomycota), и отделы, которые происходят от водорослей, которые вторично утратили пластиды. Последних часто называют псевдогрибамы, и включают в эту группу отделы Oomycota, Hyphochytriomycota и Labyrinthulomycota.

Обычно, миксомикотови грибы (они же слизевики) и псевдогрибы объединяют под общим названием "грибовидные организмы". Настоящие грибы рассматриваются как самостоятельное подцарство Fungi, которое вместе с подцарству Plantae и Animalia составляют царство Платикристат.


2. Биохимические признаки

2.1. Биосинтез лизина

Аминокислота лизин относится к незаменимым, многоклеточными животными не синтезируется. В эукариотической мире известно два основных пути биосинтеза лизина: через α-аминоадипинову кислоту (т.н. ААА-путь) и через диаминопимелинову кислоту (ДАП-путь).

Лизин с ААА-путем синтезируется из ацетилкофермента А и α-кетоглутаровой кислоты. Они образуют α-аминоадипинову кислоту, которая в дальнейшем превращается в лизин. Этот путь также называют грибным путем биосинтеза, поскольку за ним лизин синтезируется в настоящих грибов (отделы Chytridiomycota, Zygomycota, Ascomycota и Basidiomycota), хотя этот путь биосинтеза присущ также евгленофитовим водорослям (они же Евгленови).

Синтез по ДАП-путем происходит с аспартата и пирувата через диаминопимелинову кислоту. Этот путь биосинтеза называют также растительным, поскольку именно по ним происходит биосинтез лизина во всех эукариотических водорослей (кроме евгленофитових) и высших растений, а также в псевдогрибив из отделов Oomycota и Hyphochytriomycota.

Для части грибов лизин является незаменимой аминокислотой, которую организм сам не способен синтезировать. В частности, это наблюдается в псевдогрибив с Labyrintulomycota.


2.2. Биосинтез триптофана

Аминокислота триптофан у грибов синтезируется в результате работы специфических групп ферментов. Всего у грибов известно пять таких групп ферментов. Первые четыре группы присущи грибам - платикристатам, пятая группа - оомикотовим грибам. Ферментные Компекс первой группы выявлено в плазмодиофоромикотових, хитридиомикотових и аскомикотових грибов. Вторая группа - в шляпочных базидиомикотових грибов. Третя група характерна для дріжжеподібних аскомікотових, а четверта - для зигомікотових та базидіомікотових грибів (крім шапинкових).


2.3. Утворення сидерамінів

Сидерамінами називають складні органічні сполуки, які транспортують у клітину железо. Сидераміни синтезують всі справжні гриби, крім зигомікотових. Далі молекули цих речовин виділяються у зовнішне середовище, зв'язуються з іонами заліза, і знов поглинаються клітиною гриба. У псевдогрибів (зокрема, оомікотових) сидераміни не утворюються, і поглинання іонів заліза здійснюється іншими способами.

2.4. Продукти асиміляції

Основними продуктами асиміляції майже в усіх грибів є β-1,4-глюкани, представлені тваринним глікогеном. У акразіомікотових слизовиків основним продуктом асиміляції є близький до парамілону β-1,3-глюкан або β-1,6-глюкан. У оомікотових грибів основний продукт асиміляції - це також β-1,3-глюкан, який, проте, близький до ламінарину та хризоламінарину, і має назву міколамінарин. Найпоширенішим додатковим асимілятом виступає олія, яка запасається в великих кількостях переважно у спорах та старіючих клітинах.


3. Способи живлення грибів

Всі гриби є облігатно гетеротрофними організмами. Проте поглинання органічних речовин у них може здійснюватись двома шляхами - осмотрофно (піноцитозом) та фаготрофно (фагоцитозом).

При осмотрофному живленні організм або його окремі клітини (наприклад, клітини трофічних гіф - гаусторій) поглинають розчинену органічну речовину шляхом абсорбції, без утворюення травних вакуолей. Зазвичай абсорбуються низькомолекулярні органічні речовини, які утворюються при розщеплення високомолекулярних сполук різноманітними гідролітичними екзоферментами. Грибні екзоферменти здатні розкладати до мономерів такі біополімери як целюлозу, лігнін, хітин, белки, нуклеїнові кислоти тощо.

При фаготрофному живленні органічна речовина поглинається у вигляді твердих часток за допомогою псевдоподій, і надалі перетравлюється або у травних вакуолях, або в лізосомах. Осмотрофний тип живлення притаманний всім грибам, тоді як фаготрофний - лише міксомікотовим слизовикам.


4. Будова клітини

4.1. Клітинні покриви

Плодове тіло Вушанки золотої (Aleuria aurantia)
Склероцій паразитичного гриба Ріжки пурпурові (Claviceps purpurea) на колосках жита
Строми гриба (Cordyceps ophioglossoides), який паразитує на трюфелях з роду Еляфоміцес (Elaphomyces)

У справжніх грибів та грибоподібних організмів клітини можуть бути: а) голими; б) вкритими ектоплазматичним ретикулюмом ( саме зовнішній, а не внутрішній - ред.); в) мати клітинну оболонку. Голі клітини, які вкриті лише плазмалемою, зазвичай здатні до амебоїдного руху та фаготрофного живлення. Відсутність клітинних покривів характерна для вегетативних тіл акразіомікотових, міксомікотових та плазмодіофоромікотових слизовиків та для частини справжніх грибів з відділу хітридіомікотових. Голі клітини мають також зооспори псевдогрибів та справжніх грибів.
У плазмодіофоромікотвих слизовиків вегетативне тіло, представлене багатоядерним плазмодієм, перед початком утворення спор вкривається тонкою оболонкою нез'ясованої хімічної природи, розташованою назовні від плазмалеми. Цей покрив помітний лише при електронній мікроскопії. Плазмодії плазмоділофоромікотових, хоча і є голими, не здатні до фаготрофного живлення і не утворюють псевдоподій.
У лабіринтуломікотових псевдогрибів над плазмалемою розташовується ектоплазматичний ретикулюм. Він являє собою додатковий зовнішній одномембранний покрив, що утворює численні довгі тонкі випини, які анастомозують між собою та з ектоплазматичним ретикулюмом інших клітин, утворюючи складну сітчасту структуру. Простір між мембраною ектоплазматичного ретикулюму та плазмалемою виповнений однорідним аморфним матриксом. Мембрани ектоплазматичного ретикулюму продукуються особливими одномембранними органелами - ботросомами (сагеногеносомами). Крім того, на поверхні клітин лабіринтуломікотових виявлені субмікроскопічні лусочки, які утворюються у везикулах, похідних від комплексу Гольджі.
Найпоширенішим типом клітинних покривів, який притаманний більшості псевдогрибів та справжніх грибів, є клітинна оболонка. У грибів вона здійснює не лише захисну, але й ряд інших важливих функцій, зокрема, є місцем локалізації гідролітичних екзоферментів, бере участь в абсорбції поживних речовин із субстрату, в морфогенетичних та ростових процесах, надає форму клітинам грибних гіф та органам розмноження. Зовні клітинна оболонка може бути вкрита шаром слизу, який утворює капсулу.
Основу клітинної оболонки складають мікрофібрилярні скелетні компоненти - хітин або целюлоза. Над ними розташовується зовнішній аморфний матрикс, утворений глюканами, хітозаном або маннаном. З мікрофібрилярними та аморфними компонентами пов'язані різні білки та ліпіди, а також пігменти (меланіни, хінони), розчинні цукри, амінокислоти, різноманітні іони та солі.
В межах конкретних відділів грибів хімічний склад оболонки вважається консервативною ознакою високої таксономічної ваги. Зокрема, скелетним компонентом оболонок псевдогрибів є целюлоза, а справжніх грибів - хітин. Структурні компоненти аморфного матриксу у різних відділах кожної з цих груп різні.
Загалом за хімічним складом мікрофібрилярного та аморфного компонентів оболонки грибів поділяють на целюлозно-глюканові (Oomycota), целюлозно-хітинові (Hyphochytriomycota), хітин-глюканові (Chytridiomycota, Basidiomycota), хітин-глюканові, інколи - з мананами (Ascomycota) та хітин-хітозанові (Zygomycota). Проте відомо також ряд виключень з правила сталості типу клітинної оболонки в межах відділу. Зокрема, у дріжжів, які належать до аскомікотових грибів, в оболонках може бути відсутній хітин, а у представників порядку моноблефаридальних з відділу хітридіомікотових виявлено целюлозу. У слизовиків, вегетативні стадії яких позбавлені клітинних покривів, оболонками вкриті спори. Зокрема, у спор слизовиків з Myxomycota та представників порядку Acrasiales з Acrasiomycota основу оболонки складає целюлоза, а у слизовиків з Plasmodiophoromycota - хітин.


4.2. Ядерний апарат

Ядро клітини грибів має типову для всіх еукаріотів будову - воно оточене двомембранною ядерною оболонкою, містить одне або кілька ядерець; ядерна ДНК пов'язана з гістонами і має хромосомну організацію. Різноманітність ядерного апарату у грибів різних відділів проявляється, в першу чергу, у кількості ядер в клітині та в особливостях мітозу.

Кількість ядер. Вегетативні тіла грибів можуть бути одно- та багатоклітинними, або мати неклітинну будову. Клітини одно- та багатоклітинних грибів зазвичай або одноядерні або містять два генетично неоднакових ядра, які називають дикаріоном. Дикаріони є асоціацією двох ядер, що утворилися після злиття цитоплазм двох клітин без подальшої каріогамії. Одноядерні та дикаріонтичні клітини характерні для вегетативних стадій лабіринтуломікотових, аскомікотових та базидіомікотових грибів. Крім того, одноядерними є вегетативні амебоїдні клітини акразіомікотових слизовикам, а також спори більшості грибів. Неклітинний план будови тіла, при якому в одній клітині міститься багато ядер, відомий у ряді відділів слизовиків, псевдогрибів та справжніх грибів. Багатоядерні клітини за ступенем генетичної неоднорідності ядер поділяють на три групи: а) ті, що містять лише генетично однакові ядра; б) ті, що містять багато пар дикаріонів, тобто є полідикаріонтичними; в) ті, що містять багато генетично відмінних ядер, тобто гетерокаріонтичні.
Багатоядерні клітини з генетично однаковими ядрами утворюються тоді, коли багатоядерність виникає внаслідок серії мітозів лише одного вихідного ядра (наприклад, ядра спори). Такі вегетативні клітини мають оомікотові, гіфохітриомікотові, хітридіомікотові, зигомікотові та деякі аскомікотові гриби.
Клітини з багатьма дикаріонами утворюються тоді, коли при статевому процесі після плазмагамії каріогамія одразу не відбувається, а ядра щойно утвореного дикаріону починають синхронно мітотично ділитися. Саме такий тип клітин мають вторинні плазмодії плазмодіофоромікотових слизовиків. Первинні плазмодії представників цього відділу утворюються внаслідок серії послідовних мітозів ядра однієї зооспори, і, таким чином, всі ядра в первинному плазмодії, на відміну від вторинного, є генетично однаковими.
Гетерокаріонтичність характерна для плазмодіїв більшості міксомікотових слизовиків, оскільки багатоядерність у цих організмів розвивається не лише внаслідок багатьох мітозів, але й злиття з цитоплазмами інших (часто багатьох) одно- та багатоядерних особин.

Різноманітність мітозу. у грибів простежується, в першу чергу, за наявністю центріолей, поведінкою ядерної оболонки та ядерця. У акразіомікотових та плазмодіофоромікотових слизовиків, всіх псевдогрибів, а також хітридіомікотових грибів мітоз відбувається за участю центріолей. Цікаво, що представники цих відділів в життєвому циклі мають репродуктивні джгутикові стадії. У тих відділах справжніх грибів, де монадні стадії повністю відсутні, а саме - у Zygomycota, Ascomycota та Basidiomycota - відсутні також і центріолі. У слизовиків з Myxomycota центріолі переважно є, але стають центрами організації веретена поділу і беруть участь у мітозі лише при поділі ядра одноядерних клітин - зооспор чи міксамеб; в багатоядерних плазмодіях мітоз відбувається без участі центріолей навіть в тих випадках, коли вони наявні. Більшість грибів під час мітозу зберігає ядерну оболонку. У акразіомікотових, міксомікотових, оомікотових, зигомікотових та аскомікотових грибів вона залишається інтактною, і мітоз, таким чином, є закритим. Крім того, на зовнішній ядерній мембрані у зигомікотових грибів в метафазі з'являється специфічна дископодібна структура. У плазмодіофоромікотових, лабіринтуломікотових, гіфохітриоміктових та хітридіомікотових біля кожного полюсу веретена в ядерній оболонці утворюється по одній великій перфорації, тобто мітоз є напівзакритим. Відкритий мітоз виявлений лише у міксомікотових слизовиків (на стадії одноядерних міксамеб) та у деяких шапинкових базидіомікотових грибів. Ядерце у грибів при мітозі демонструє три варіанти поведінки. При першому варіанті воно зникає на початку мітозу і відновлюється після його закінчення (Myxomycota, Labyrintulomycota, Hyphochytriomycota). При другому варіанті ядерце не зникає, і на певній стадії ділиться перешнуровкою: у профазі - у акразіомікотових, у метафазі - в плазмодіофоромікотових, на початку телофази - у оомікотових та більшості видів зигомікотових грибів. У частини видів з Chytridiomycota, Ascomycota та Basidiomycota наявний третій варіант поведінки ядерця: на початку мітозу воно виштовхується з ядра у цитоплазму, де і зберігається до закінчення поділу.


4.3. Мітохондріальний апарат

Всі гриби мають мітохондрії типової для решти еукаріотів будови - вони оточені двомембранною оболонкою, внутрішня мембрана утворює інвагінації - кристи. Матрикс мітохондрій містить мітохондріальну ДНК, прокаріотичні рибосоми з коефіцієнтом седиментації 70S, комплекс різноманітних ферментів, більшість з яких забезпечує процес дихання.

Різноманітність організацій мітохондріального апарату, як і у водоростей, простежується, в першу чергу, за морфологією крист. Зокрема, акразіомікотові слизовики, подібно до евгленофітових водоростей, мають кристи трьох типів - дископодібні, трубчасті та пластинчасті. Міксомікотові слизовики та псевдогриби містять мітохондрії з трубчастими та пластинчастими кристами або виключно з трубчастими. У плазмодіофоромікотових слизовиків та всіх справжніх грибів (Chytridiomycota, Zygomycota, Ascomycota, Basidiomycota) кристи лише пластинчасті.


4.4. Джгутикові стадії

Представители всех отделов слизевиков, псевдогрибив и одного из отделов настоящих грибов (Chytridiomycota) в жизненном цикле способны образовывать жгутиковые стадии, представлены зооспорами или гаметами. В настоящих грибов из отделов Zygomycota, Ascomycota и Basidiomycota отсутствуют не только жгутиковые стадии, но и центриоли - органоиды, производные от базальных тел жгутиков.
В самом общем виде жгутиковые стадии грибов делят на три основных типа: а) с двумя изо-или гетероконтнимы передними гладкими жгутиками (иногда один из жгутиков может быть редуцированным, но сохраняется его базальное тело) б) с двумя гетероконтнимы передними или боковыми жгутиками, с которых длиннее покрыт трехчленными волосками - ретронемамы (второй жгутик может быть редуцированным до базального тела) в) с одним задним бичоподибним гладким жгутиком. Жгутики первого типа характерны для всех слизевиков. При этом акразиомикотови имеют монадной клетки с двумя изоконтнимы жгутиками, миксомикотови - с двумя гетероконтнимы, плазмодиофоромикотови - с двумя гетероконтнимы или одним жгутиком. Монадной клетки второго, страменопильного плана строения, характерные для псевдогрибив. Образование ретронем, которые покрывают один из жгутиков, начинается в межмембранном пространстве ядерной оболочки. Далее от наружной мембраны ядра в цитоплазму видшнуровуються пузырьки с зачаточными ретронемамы. После созревания везикулы продвигаются к поверхности клетки, сливаются с плазмалемме у базальных ТиД жгутиков и выводят, таким образом, ретронемамы на плазмалему при основании аксонема жгутика. Монадной клетки в разных отделах псевдогрибив отличаются, в первую очередь, по количеству жгутиков: в оомикотових и лабиринтуломикотових монадной стадии дводжгутикови, длиннее жгутик, покрытый ретронемамы и направлен вперед; короткий гладкий, и ориентирован назад. Монадной клетки гифохитриомикотових имеют только один передний перистый жгутик; от второго жгутика остается только базальное тело, видоизмененное в единственную центриоли. Монадной стадии третьего типа - с гладким задним бичоподибним жгутиком - называют иногда опистоконтнимы. Ультратонкая строение таких клеток очень похожа по строению сперматозоидов многоклеточных животных. Считают, что опистоконтни клетки возникли от дводжгутикових результате редукции одного из жгутиков. Это подтверждается наличием в клетке одиночной центриоли, расположенной вблизи базального тела жгутика, которая, вероятно, является видоизмененным базальным телом друга жгутика. Опистоконтни жгутиковые стадии у грибов представлены только в отделе Chytridiomycota, и рассматриваются как одно из доказательств происхождения настоящих грибов и многоклеточных животных от общего предка.


4.5. Комплекс Гольджи

Комплекс Гольджи развит не у всех грибов. В частности, его нет в акразиомикотових слизевиков и настоящих грибов (хитридиомикотових, зигомикотових, аскомиктових и базидиомикотових). В аскомикотових и базидиомикотових в клетках вместо комплекса Гольджи иногда наблюдаются цистерны эндоплазматической сети, образующие небольшие стопки. Однако такие комплексы цистерн обязательно ассоциируются крайней мере с одним из каналов эндоплазматической сети. Хорошо развиты типовые комплексы Гольджи имеющиеся в плазмодиофоромикотових слизевиков и псевдогрибив (оомикотових, гифохитриомикотових и лабиринтуломикотових). Обычно в этих грибов комплекс Гольджи прижат к поверхности ядерной мембраны.


5. Морфология вегетативного тела

5.1. Амебоидна строение

Миксамебы Диктиостелиуму (Dictyostelium) под микроскопом
Плазмодий Диктиостелиуму (Dictyostelium) под микроскопом

Амебоини талом лишенные твердых клеточных покровов, способные к метаболическим изменениям формы, могут образовывать настоящие или ложные псевдоподии. Амебоидни талом характерны для всех слизевиков, лабиринтуломикотових и гифохитриомикотових и многих хитридиомикотових грибов. В зависимости от количества ядер амебоидни вегетативные тела разделяют на миксамебы, миксофлагеляты, плазмодии и псевдоплазмодия.

  • Миксамебы всегда микроскопические, одноядерные или изредка дикарионтични, лишены жгутиков, способны к активному движению посредством псевдоподий. По относительным размерам и количеству псевдоподии миксамеб разделяют на удлиненные узкие и обычно многочисленные филоподии и короткие широкие одиночные лобоподии. Филоподии способны захватывать твердые частицы пищи, то есть кроме локомоторной выполняют еще и трофическую функцию. Миксамебы с филоподиямы присущи миксомикотовим слизовакам. Миксамебы с одиночной лобоподиею, которая осуществляет только локомоторную функцию, характерные для акразиомикотових слизевиков. Лобоподия в миксамеб акразиомикотових располагается на переднем конце клетки. Задняя часть миксамебы образует лопасть, в которой располагаются выделительные вакуоли, и называется уроидною зоной.
  • Миксофлагеляты также микроскопические, образуют филоподии, но кроме того имеют два гетероконтних жгутики, и, таким образом, представляют особый вариант монадной клеток. В зависимости от наличия капельно-жидкой воды и концентрации ионов кальция миксофлагеляты способны превращаться в миксамебы, и наоборот. Среди грибов вегетативные клетки, представленные миксофлагелятамы, встречаются в отделе Myxomycota.
  • Псевдоплазмодії являють собою агрегати міксамеб, які зберігають свою індивідуальність. Утворюються псевдоплазмодії внаслідок об'єднання у колонії поодиноких міксамеб, при цьому цитоплазми останніх між собою не зливаються. Псевдоплазмодії відомі у акразіомікотових слизовиків, лабіринтуломікотових псевдогрибів та міксомікотових слизовиків з класу диктіостеліоміцетів. Псевдоплазмодії кожного з цих таксонів відрізняються за способом агрегації клітинних індивідів, їх здатністю до руху взагалі та зкоординованого руху зокрема.
  • Плазмодії мають неклітинну будову: вони схожі на міксамеби, але містять багато ядер - від чотирьох до десятків та навіть сотень тисяч. Розміри плазмодіїв коливаються в широких межах - від мікроскопічних (наприклад, у плазмодіофоромікотових слизовиків) до макроскопічних (у багатьох міксомікотових). Плазмодії можуть бути нерухомі або здатними рухатись за допомогою псевдоподій. Відомо два способи утворення плазмодіїїв: по-перше, з одноядерних міксамеб або репродуктивних клітин (зокрема, зооспор) внаслідок серії послідовних мітотичних поділів ядра; по-друге, внаслідок злиття між собою кілької (інколи - багатьох) амебоїдних одно- або багатоядерних індивідів. Плазмодії можуть також утворюватись внаслідок комбінації обох цих шляхів.

Зі способом утворення плазмодію пов'язана ступінь генетичної однорідності його ядер, згідно з чим плазмодії поділяють на генетично однорідні, полідикаріонтичні та гетеродикаріонтичні. За розмірами, формою та наявністю в плазмодіях закономірного руху цитоплазми (т.зв. човникових рухів), плазмодії поділяють на протоплазмодії, афаноплазмодії та фанероплазмодії.
Протоплазмодії мікроскопічні, зазвичай без певної форми або неправильно сітчасті, без човникових рухів цитоплазми. Такий тип плазмодіїв притаманний деяким міксомікотовим, плазмодіофоромікотовим слизовикам та частині хітридіомікотових грибів. Афаноплазмодії макроскопічні, неправильно-віялоподібної форми, з цитоплазмою, що здійснює човникові рухи. Афаноплазмодії зовні нагадують губчасту протоплазматичну масу. Характерні для частини міксомікотових слизовиків.
Фанероплазмодії також макроскопічні. На відміну від афаноплазмодіїв вони мають досить щільну консистенцію і майже правильну віялоподібну форму. У фанероплазмодіях є система розгалужених жилок, по яких цитоплазма здійснює човникові рухи. Зовні фанероплазмодії вкриті шаром ущільненого слизу. Як і афаноплазмодій, цей тип вегетативного тіла зустрічається лише у представників Myxomycota.

  • Особливим варіантом вегетативного тіла, який часто розглядають як перехідний між амебоїдним та міцеліальним планами будови, є ризоміцелій. Ризоміцелій складається з багатоядерної вкритої клітинною оболонкою центральної частини, від якої відходять голі тонкі розгалужені ризоподії, що позбавлені ядер. Такий тип вегетативного тіла відомий у представників відділів Hyphochytriomycota та Chytridiomycota.

5.2. Міцеліальна будова

Гіфи Базидіомікотових грибів на ґрунті мають септований тип міцелію
Септований міцелій Асперґілюсу чорного (Aspergillus nigar) на агарному середовищі в чашці Петрі

Вегетативне тіло переважної більшості грибів являє собою систему вкритих клітинними оболонками ниток, яка називається міцелій. Окрема нитка є елементарною одиницею міцелію і називається гіфою. Зрідка міцелій складається лише з однієї гіфи, тобто є нерозгалуженим (у деяких хітридіомікотових грибів). Проте у більшості випадків міцелій галузиться і складається з великої кількості гіф.
Гіфи мають вигляд циліндричних трубок, діаметр яких коливається в межах 2-150 мкм, проте найчастіше становить 5-10 мкм. Гіфа здатна до необмеженого росту в довжину, причому цей ріст завжди апікальний, і обумовлений, в першу чергу, роботою літичних пухирців та хітосом, або їх аналогів. За будовою гіфи поділяють на два типи - несептовані та септовані.

Несептовані гіфи багатоядерні і позбавлені поперечних перегородок, тобто мають неклітинну будову. Міцелій, який утворений несептованими гіфами, називають неклітинним міцелієм. Такий тип міцелію притаманний майже всім оомікотовим грибам, частині хітридіомікотових та більшості зигомікотових грибів.

Міцелій, який складається з гіф, що рівномірно поділені на клітини поперечними перегородками - септами, називається клітинним, або септованим міцелієм. Клітини гіф септованого міцелію можуть містити або лише одне ядро, або один дикаріон, або кілька ядер. Септи, які розмежовують сусідні вегетативні клітини гіфи, майже завжди мають поровий апарат, завдяки якому міцелій являє собою фізіологічно цілісний багатоклітинний організм. Структура порового апарату септ у грибів різних таксономічних груп різна. За будовою пор септи поділяють на мікропорові, прості та доліпорові. Мікропорові септи перфоровані багатьма дрібними порами. Септи такого типу зустрічаються зрідка, і відомі лише у деяких представників хітридіомікотових, зигомікотових та аскомікотових грибів.
Прості септи мають лише одну досить велику центральну пору. Септа у напрямку до пори потоншується. Пора в простій септі може бути відкрита (у сажкових грибів з Basidiomycota) або прикрита спеціальними структурами - дрібними вакуолями (наприклад, у іржастих базидіомікотових грибів) або тільцем Вороніна (у багатьох аскомікотових).

Доліпорові септи також мають лише одну велику центральну пору, проте, на відміну від простих септ, поперечна перегородка навколо пори потовщена. Пора в доліпорових септах може бути відкритою, закритою пробкою з аморфної електронно-щільної речовини або прикрита пористим мембранним ковпачком - парентосомою. Доліпорові септи з парентосомами характерні для більшості базидіомікотових грибів з макроскопічними плодовими тілами. Доліпорові септи без парентосом поширені переважно серед зигомікотових грибів із септованим міцелієм.
У деяких грибів вегетативне тіло має вигляд поодиноких клітин, що брунькуються. Якщо дочірні клітини після утворення септи не відокремлюються від материнської, то утворюється ланцюжок фізіологічно не пов'язаних між собою клітин, який називають псевдоміцелієм. Такий тип вегетативного тіла властивий деяким аскоміцетам, зокрема він характерний для дріжджів.


6. Размножение

6.1. Вегетативное размножение

Мікрофотографія брунькування у пивних дріжджів ( Saccharomyces cerevisiae)

Відбувається внаслідок поділу одноклітинних індивідів (міксамеб та міксофлагелят), фрагментацією плазмодіїв та міцелію. До способів вегетативного розмноження відносять також розмноження шляхом утворення артроспор та хламідоспор. Артроспори виникають внаслідок фрагментації гіфи на окремі короткі клітини. Хламідоспори утворюються подібно до артроспор, але, на відміну від останніх, мають темнозабарвлені, переважно потовщені клітинні оболонки, і є аналогом акінет у водоростей. Брунькування, яке супроводжується відокремленням дочірніх клітин, також вважається одним із способів вегетативного розмноження.


6.2. Нестатеве розмноження

Микрофотография Candida albicans із бластоспорами та хламідоспорами. Гриби роду Candida є збудниками небезпечних захворюваню людини, що називаються кандидози
Спорангії диктиостеліуму ( Dictyostelium) під мікроскопом
Мікропрепарат мукору ( Mucor) зі спорангієм та спорами. Мукор - сапротрофний гриб, проте може спричиняти важкі захворювання шкіри та мозку людини - мукоромікози
Мікрофотографія конідій Epidermophyton floccosum

Здійснюється спеціалізованими клітинами - спорами, які можуть утворюватись ендогенно у спорангіях та екзогенно, відокремлюючись від спеціалізованих гіф - конідієносців.
До спеціалізованих клітин нестатевого розмноження, що мають ендогенне походження, належать спори міксомікотових слизовиків (за винятком диктіостеліоміцетових), міксамеби, зооспори, а також спорангіоспори зигомікотових грибів,.

  • Спори міксомікотових нерухомі, вкриті целюлозною оболонкою, і утворюються у спорангіях або всередині плодових тіл. У еугамних слизовиків утворенню спор передує редукційний поділ ядер; такі спори мають гаплоїдний набір хромосом. Залежно від наявності у середовищі крапельно-рідкої води спора проростає поодинокою міксамебою, міксофлагелятою або зооспорою.
  • Міксамеби. Розмноження за допомогою міксамеб притаманне акразіомікотовим та міксомікотовим слизовикам. Міксамеби утворюються при проростанні ендогенних (у міксомікотових) або екзогенних (у акразіомікотових) спор.
  • Зооспори відомі в усіх відділах слизовиків, псевдогрибів та у справжніх грибів з відділу хітридіомікотових. Зооспори грибів завжди позбавлені клітинної оболонки. Ультратонка будова зооспор є однією з найвагоміших таксономічних ознак, яка використовується при поділі грибів на відділи. В різних відділах грибів зооспори утворюються в спорангіях різних типів. Зокрема, у слизовиків зооспори розвиваються із ендогенних (міксомікотові) або екзогенних (акразіомікотові та плазмодіофоромікотові) нерухомих спор, причому з однієї спори виходить лише одна зооспора (фактично нерухома спора слизовиків являють собою спорангій з однією зооспорою або міксамебою). Зооспори лабіринтуломікотових утворюються з сорусів цист. Такі цисти виникають всередині однієї клітини після серії мітозів, які завершуються редукційним поділом. Одна циста дає початок одній зооспорі з гаплоїдним набором хромосом. У гіфохітриомікотових, оомікотових та хітридіомікотових грибів в одному зооспорангії утворюється багато зооспор. Гриби, у яких на зооспорангій перетворюється все вегетативне тіло називають холокарпічними. Представників, у яких спорангієм стає лише частина вегетативного тіла, належать до еукарпічних форм. Зокрема, всі гіфохітриоміцети є організмами холокарпічними. У хітридіомікотових відомі як холо-, так і еукарпічні представники.
  • Спорангиоспоры. Спорангії оомікотових здатні розвиватись або безпосередньо з верхівкової частини вегетативної гіфи, яка відокремлюється від решти міцелію септою (переважно у тих видів, що мешкають у водному середовищі), або відшнуровуватись від спеціалізованої гіфи - спорангіофора (у більшості наземних представників). Спорангій, який розвивається на спорангіофорі, є багатоядерним, і, залежно від умов зволоження, проростає або зооспорами, або амебоїдним протопластом, або неклітинною гіфою. У водних оомікотових зооспори здатні змінювати свою морфологію. Це явище отримало назву дипланетизму: зооспора, яка виходить зі спорангію, має апікальні джгутики; після деякого періоду активного руху вона інцистується; при проростанні зооспора виходить з оболонки цисти, але тепер її джгутики розташовуються латерально. Спорангіоспори також утворюються ендогенно, але, на відміну від зооспор, міксамеб та спор слизовиків, позбавлені джгутиків, вкриті міцною оболонкою, і проростають у гіфи міцелію. Спорангіоспори формуються всередині спорангіїв, які знаходяться на верхівках спеціалізованих гіф - спорангієносців, які піднімають органи нестатевого спороношення над субстратом.
  • Спори екзогенного походження. До спеціалізованих клітин нестатевого розмноження, що мають екзогенне походження, належать спори плазмодіофоромікотових та акразіомікотових слизовиків та конідії. Спори плазмодіофоромікотових та акразіомікотових слизовиків розвиваються внаслідок трансформації та фрагментації частин плазмодіїв та псевдоплазмодіїв без утворення спорангіїв. Подібно до спор міксомікотових, вони проростають поодинокими міксамебами або зооспорами.
  • Конідії. Розмноження конідіями є основним і найбільш поширеним способом нестатевого репродукції переважної більшості справжніх грибів. Конідії - це нерухомі, вкриті оболонкою клітини, що утворюються екзогенно, відокремлюючись від спеціалізованих гіф міцелію - конідієносців. На відміну від артроспор та хламідоспор, які проходять стадію диференціації лише після відокремлення від вегетативної гіфи, диференціація конідій розпочинається ще на міцелії: верхівкова частина конідієносця перетворюється на зачаток конідії, часто збільшується у розмірах, інколи синтезує додаткові шари оболонки, і далі відокремлюється від гіфи. Конідії, які спочатку відокремлюються від конідієносця септою, а далі дозрівають на ньому, називають алевроконідіями. Перед відокремленням від материнської гіфи пори, які з'єднували зачаткову алевроконідію з протопластом конідієносця, закриваються пробками. Конідії, які спочатку проходять стадію диференціації, і лише потім відокремлюються септою від конідієносця, називають бластоконідіями. Конідієносці мають різноманітну форму - від поодиноких нерозгалужених до складно багаторазово розгалужених Конідії на конідієносцях можуть бути поодинокими або утворювати довгі ланцюжки. По відношенню один до одного конідієносці можуть розташовуватись різними способами. За характером розташування конідієносців виділяють кілька типів конідіальних спороношень: поодинокі конідієносці, коремії, спородохії, ложа та пікніди. Поодинокі конідієносці щільних груп не утворюють. Якщо конідієносці розвиваються щільною групою, склеюючись боками за допомогою слизу і утворюючи колонку з головкою конідій на верхівці, то таке спороношення називають коремієм. Суцільні шари конідієносців, які розвиваються у вигляді подушечок на опуклій системі щільно переплетених гіф утворює спородохії. Ложа нагадують спородохії, але тут конідієносці розвиваються не на опуклому, а на плоскому переплетенні гіф. Якщо переплетення гіф, на якому розвиваються конідієносці, глибоко увігнуте і нагадує горщік, занурений у субстрат або у структуру з видозмінених вегетативних гіф (т.зв. строму), то таке спороношення називають пікнідою. Типи конідіальних спороношень є важливою ознакою в таксономії справжніх грибів на рівнях, починаючи з класів і закінчуючи видами. Проте особливого значення морфологія конідіальних спороношень набуває у таксономії т.зв. мітоспорових грибів - тих аскомікотових та базидіомікотових, у яких статеві спороношення не відомі, і місце у системі поки що є нез'ясованим. У справжніх грибів вегетативну стадію, яка утворює лише нестатеве (переважно - конідіальне) спороношення, називають анаморфною, на відміну від вегетативної стадії, яка бере участь у статевому процесі і утворюють статеві спороношення - т.зв. телеоморфної. Разом анаморфна та телеоморфна стадії складають повний цикл розвитку гриба - голоморфу.

6.3. Половое размножение

Схема гаметангіогамії у Зигомікотових грибів (зигогамія)

Відбувається внаслідок статевого процесу, який, як і у інших еукаріотів, обумовлює підтримання певного рівня рекомбінантної мінливості популяцій. Статевий процес серед грибів не виявлений лише у акразіомікотових слизовиків, і достовірно не описаний у лабіринтуломікотових (хоча ультраструктурні дані свідчать про наявність в останньому відділі мейозу, який відбувається при утворенні цист).
Як і у випадку нестатевого розмноження, статеві процеси у грибів різноманітніші, ніж у водоростей, і представлені гологамією, різними варіантами гаметогамії, гаметангіогамією та соматогамією. Гологамія характерна для слизовиків з відділу Myxomycota, де відбувається внаслідок злиття вегетативних амебоїдів (переважно міксамеб).
Гаметогамія представлена ізо-, гетеро- та оогамією. Ізогамія виявлена у міксомікотових та плазмодіофоромікотових слизовиків, а також у гіфохитріомікотових псевдогрибів та більшості еугамних хітридіомікотових. Гетерогамія в цілому у грибів зустрічається зрідка, і відома лише у деяких хітридіомікотових.

  • Оогамний статевий процес зустрічається у частини хітридіомікотових з порядку моноблефаридальних та у абсолютної більшості оомікотових (останній відділ отримав назву саме за типом статевого процесу). У цих відділах оогамія здійснюється по різному. У хітридіомікотових нерухома яйцеклітина запліднюється рухливими сперматозоїдами, що мають джгутики, тобто представлена типовим варіантом. У оомікотових нерухомі яйцеклітини запліднюються не сперматозоїдами, а вмістом недиференційованих на клітини багатоядерних чоловічих гаметангіїв, які переливають свій вміст в яйцеклітини через спеціальні вирости клітинної оболонки.
  • Гаметангіогамія являє собою процес злиття вмісту недиференційованих на гамети двох гаметангіїв. Варіанти статевого процесу цього типу відомі у зигомікотових (під назвою зигогамії) та у аскомікотових. При зигогамії зливаються дві багатоядерні клітини, які розташовуються на верхівках гіф неклітинного міцелію, від якого відокремлюються септами. Морфологічно ці клітини виглядають однаково, але їх ядра мають різні статеві знаки. Після плазмагамії ядра різних статевих знаків попарно зливаються, і утворюється зигота з багатьма диплоїдними ядрами. Вона одягається багатошаровою щільною оболонкою і перетворюється на зигоспору. Після періоду спокою в зигоспорі відбувається мейоз, і вона гаплоїдною гіфою, на верхівці якої формується спорангій з гаплоїдними спорангіоспорами. Гаметангіогамія з утворенням дикаріонів притаманна аскомікотовим грибам. Тут також зливаються гаметагнгії, вміст яких не диференційований на гамети. Проте, на відміну від зигогамії, плазмогамія не супроводжується каріогамією. Крім того, хоча гаметангії багатоядерні, в статевому процесі бере участь лише по одному ядру з кожного гаметангію, які утворюють дикаріон. З такої клітини злиття з дикаріонтичним ядром, як правило, розвиваються гіфи дикаріонтичного міцелію. Згодом ядра дикаріону зливаються, утворюючи диплоїдне зиготичне ядро. Далі відбувається мейоз і розвивається статеве спороношення, представлене сумкою (аском). В аску ендогенно розвиваються гаплоїдні аскоспори.
  • Соматогамія, при якій також утворюються дикаріони, характерна для базидіоміктотових грибів. Спеціалізовані статеві органи в цьому випадку повністю втрачені, а їх функцію виконують соматичні клітини вегетативного міцелію. Копуляція відбувається між двома вкритими оболонками клітинами гаплоїдних гіф. При цьому плазмагамія не супроводжується каріогамією, натомність утворюються дикаріони. З клітин з дикаріонами розвивається основних тип міцелію базидіомікотових - дикаріонтичний септований міцелій. Наприкінці дикаріонтичної фази ядра дикаріонів зливаються, утворюється диплоїдне зиготичне ядро, відбувається мейоз і розвивається статеве спороношення - базидія з розташованими на її поверхні гаплоїдними базидіоспорами.

Серед грибів з соматогамним статевим процесом відомі як гомоталічні, так і гетероталічні форми. У гомоталічних грибів до статевий процес може відбуватись між клітинами одного й того ж міцелію. У гетероталічних зливаються тільки клітини різних статевих знаків, які утворюються на різних міцеліях. Гетероталізм може бути двох типів: біполярний, при якому стать визначається однією парою аллелєй, та тетраполярний, коли стать визначають дві пари аллелєй, локалізовані в різних хромосомах. Такі алельні пари комбінуються незалежно, і як наслідок, клітини, які беруть участь у копуляції, мають не два (чоловіча або жіноча), а чотири статевих знаки. Таким чином, відділи грибів добре відрізняються за типом статевого процесу. Зокрема, серед слизовиків у акразіомікотових він відсутній, у міксомікотових - хологамний або ізогамний, у плазмодіофоромікотових - ізогамний. Серед псевдогрибів статевий процес у гіфохітриомікотових представлений ізогамією, а у оомікотових - оогамією, яка здійснюється без участі чоловічих гамет. У справжніх грибів в межах відділу хітридіомікотових статевий процес являє собою різні типи класичної гаметогамії - ізо-, гетеро- та оогамію; у зигомікотових - гаметангіогамію за типом зигогамії, у аскомікотових - також гаметангіогамію, але без утворення справжніх зигот. Для базидіомікотових характерна соматогамія.


6.4. Статеве спороношення

Кінцевим продуктом статевого процесу у грибів є утворення диплоїдних або гаплоїдних спор, які внаслідок рекомбінації ДНК у диплоїдній фазі стають генетично відмінними від батьківських геномів. Такі спори "тиражують" результати статевого процесу. Структури, де утворюються ці спори, називають органами статевого спороношення грибів, або статевими спороношеннями. В різних відділах грибів статеві спороношення відмінні, і завдяки цьому широко використовуються в систематиці як одна з головних таксономічних ознак на рівні відділів.
Статеві спороношення відсутні у акразіомікотових слизовиків. У міксомікотових статеве спороношення представлене спорокарпами зі спорами. Спорокарпи являють собою плодові тіла, в яких утворюються спори. Статеве спороношення розвивається після статевого процесу не одразу, оскільки зигота без періоду спокою перетворюється на міксамебу або міксофлагеляту з диплоїдним ядром, і внаслідок серії мітозів або злиття з іншими амебоїдами дає початок гомо- або гетерокаріонтичному плазмодію з диплоїдними ядрами. В таких плазмодіях надалі відбувається мейоз, і плазмодії перетворюються на плодові тіла з гаплоїдними спорами.
У плазмодіофоромікотових статеве спороношення - це зооспорогенні цисти, що утворюються зі вторинного плазмодію. Подібно до міксомікотових, статеве спороношення після статевого процесу розвивається не одразу: після злиття ізогамет утворюється дикаріонтична чотириджгутикова клітина злиття, яка надалі внаслідок синхронних поділів ядер дикаріону розвивається в дикаріонтичний вторинний плазмодій. З часом ядра дикаріонів зливаються, утворюючи диплоїдне зиготичне ядро. Далі відбувається мейоз, і плазмодій повністю розпадається на одноядерні, вкриті клітинними оболонками гаплоїдні цисти, які також називають спочиваючими спорами. На відміну від міксомікотових, плодові тіла у плазмодіофоромікотових не утворюються.

У оомікотових зиготи (ооспори) після періоду спокою або безпосередньо перетворюються на зооспорангій з гаплоїдними зооспорами, або проростають у спорангіофор з одним чи кількома зооспорангіями на верхівці. Таким чином, статеве спороношення оомікотових представлено зооспорангіями з зооспорами.

Статеве спороношення гіфохітриомікотових залишається остаточно не з'ясованим. Відомо, що після статевого процесу зигота збільшується у розмірах, її диплоїдне ядро багаторазово ділиться, і один з поділів є редукційним. Далі протопласт розпадається на одноядерні ділянки, подальша доля яких незрозуміла - за даними одних авторів, ці ділянки перетворюються на одноядерні спочиваючі спори, з яких врешті решт утворюються зооспори; за даними інших дослідників, такі ділянки одразу перетворюються на зооспори. Таким чином статеве спороношення гіфохітриомікотових являє собою спорангій, але нез'ясованого типу.
Лабіринтуломікотові внаслідок статевого процесу утворюєть багато диплоїдних цист. В кожній цисті відбувається мітоз, потім - мейоз, і з цисти розвивається вісім зооспор з гаплоїдними ядрами. Таким чином, статеве спороношення представлено диплоїдними зооспорогенними цистами.

У хітридіомікотових відомо два варіанти поведінки після статевого процесу. При першому варіанті (хітридіальні гриби) після статевого процесу утворюються дикаріонтичні зимові цисти; в них ядра дикаріонів при проростанні зливаються, далі редукційно діляться, після чого циста перетворюється на зооспорангій з гаплоїдними зооспорами. При другому варіанті (бластокладіальні та моноблефаридальні гриби) ядра гамет зливаються одразу, без утворення дикаріонів; зигота після періоду спокою проростає гіфою - спорофітом, на якій утворюються зооспорангії з диплоїдними зооспорами. Таким чином, статеве спороношення у хітридіомікотових представлено або зооспорогенними цистами, або зооспорангіями з зооспорами, які утворюються на гіфах спорофіту.

Статеве спороношення зигомікотових являє собою спорангій зі спорангіоспорами, який розвивається із зигоспори. Спорангіоспори нерухомі, вкриті клітинною оболонкою і мають гаплоїдний набір хромосом.
Аскомікотовим притаманне статеве спороншення, яке називається аском з аскоспорами. Після злиття гаметангіїв одна пара несестринських ядер утворює дикаріон, з якого, як правило, розвивається дикаріонтичний міцелій. В клітинах гіф такого міцелію відбувається каріогамія, і після певних морфогенетичних процесів (наприклад, з утворенням гачка, див. нижче), під час яких здійснюється редукційний поділ ядра, клітина перетворюється на ендогенний статевий спорагій - аск (сумку), вередині якої розвиваються гаплоїдні аскоспори. Аски можуть розвиватися безпосередньо на міцелії, або розташовуватись на поверхні чи всередині спеціалізованих видозмін міцелію, які називають плодовими тілами, і поділяють на закриті (клейстотеції), напіввідкриті (перитеції), відкриті (апотеції) чи несправжні (псевдотеції). Гриби, у яких плодові тіла макроскопічні, називають макроміцетами (на відміну від мікроскопічних грибів - мікроміцетів).

У базидіомікотових статеве спороношення представлено базидією з базидіоспорами. Після злиття цитоплазм вегетативних клітин міцелію (соматогамії), як і у аскоміцетів, каріогамія одразу не відбувається, а утворюється дикаріон, з якого розвивається дикаріонтичний міцелій. Згодом окремі клітини гіф такого міцелію починають перетворюватись на органи статевого спороношення. Під час цього процесу відбувається каріогамія, далі - мейоз, і врешті решт з таких клітин розвивається гаплоїдна базидія. У випини, які утворює оболонка базидії, мігрують дочірні гаплоїдні ядра. Випини відділяються від базидії септами, і перетворюються на одноядерні вкриті оболонкою гаплоїдні базидіоспори. Таким чином, базидіоспори, на відміну від аскоспор, утворюються екзогенно. Базидії можуть розташовуватись безпосередньо на міцелії або на поверхні відкритих (гімнокарпних), напіввідкритих (геміангіокарпних) чи всередині закритих (ангіокарпних) плодових тіл. У багатьох базидіомікотових базидії розвиваються зі спочиваючих дикаріонтичних клітин - телейтоспор.


7. Життєві цикли

7.1. Цикломорфоз

Є єдиним типом життєвого циклу лише у акразіомікотових грибів. Здатність до статевого розмноження не виявлена або повністю втрачена у багатьох грибів, які за коплексом морфологічних, цитологічних та молекулярно-генетичних ознак належать до аскомікотових та базидіомікотових грибів. Оскільки системи цих відділів базуються, в першу чергу, на ознаках, пов'язаних з органами статевого спороношення, для агамних представників не вдається визначити чіткого місця у системі цих відділів. Такі гриби об'єднані у штучну групу грибів з нез'ясованим систематичним положенням, яку сьогодні називають групою мітоспорових грибів, а також незавершеними грибами (Fungi Imperfecti) чи класом дейтероміцетів (Deuteromycetes). Мітоспорові гриби розмножуються виключно нестатевим шляхом, переважно за допомогою конідій. Таким чином, цикломорфоз є основним типом життєвого циклу у анаморфних грибів.

Хоча у більшості мітоспорових грибів статевий процес відсутній, рівень рекомбінантної мінливості є досить високим. Він обумовлений явищами гетерокаріозісу (різноядерності) та парасексуальним циклом. При гетерокаріозісі в різних клітинах одного міцелію можуть знаходитися генетично неоднакові ядра, які через анастомози переходять з однієї клітини міцелію в іншу. Хоча "мігруючі" ядра зазвичай не зливаються з ядрами клітини-реципієнта, але привносять нову генетичну інформацію і розширюють тим самим адаптивні можливості гриба по відношенню умов зовнішнього середовища.

В окремих випадках "мігруючі" ядра зливаються з ядрами клітини-реципієнта. Таке явище називають парасексуальним циклом. Воно призводить до утворення диплоїдних ядер, що забезпечують генетичні зміни грибного організму. Парасексуальний цикл включає кілька етапів: злиття ядер гетерокаріона і утворення диплоїдного гетерозиготного ядра; розмноження таких гетерозиготних ядер в міцелії; мітотична рекомбінація при розмноженні диплоїдних ядер; вегетативна гаплодізація диплоїдних ядер внаслідок втрати хромосом.
В інших відділах принаймі у окремих представників виявлено статеве розмноження, тобто існують життєві цикли зі зміною ядерних фаз. Проте конкретні типи життєвих циклів не завжди визначені через брак експериментальних даних щодо окремих стадій онтогенезу. Зокрема, така ситуація має місце для лабіринтуломікотових та гіфохітриомікотових псевдогрибів, де спостереженнями охоплені не всі стадії, незважаючи на відомості про навність статевого процесу.


7.2. Життєві цикли евгамних грибів

Схема життєвого циклу пивних дріжджів ( Saccharomyces cerevisiae)

В онтогенезі евгамних грибів наявна вегетативна стадії, представлена особинами з дикаріонтичними клітинами. Після статевого процесу утворюється не зигота, а клітина злиття з дикаріонтичними ядрами. Зигота у класичному розумінні цього терміну в онтогенезі може бути взагалі відсутня, хоча замість неї після каріогамії обов'язково утворються диплоїдні зиготичні ядра. Такі ядра є гомологами зиготи, і при розрахунку схеми життєвого циклу саме їх визначають як зиготу. Присутність у життєвому циклі грибів дикаріонтичних поколінь обов'язково відзначають у назві типу життєвого циклу. В межах конкретних відділів грибів життєві цикли за їх типом є переважно досить одноманітними, що дозволяє використовувати цю ознаку при характеристиці грибних таксонів найвищого рангу.

Для міксомікотових характерні диплофазні життєві цикли з гаметичною редукцією та без зміни поколінь або гаплодиплофазні цикли зі споричною редукцією та неправильним чергуванням ізоморфних поколінь без дикаріонтичних фаз. У плазмодіофоромікотових життєві цикли гаплофазні, з зиготичною редукцією та чергуванням одноядерного гаметофіту та дикаріонтичного спорофіту. Оомікотові гриби мають диплофазні життєві цикли з гаметичною редукцією та без зміни поколінь.
Для справжніх грибів у більшості випадків характерні життєві цикли з наявністю дикаріонтичних поколінь, і лише у частини хітридіомікотових та зигомікотових грибів такі покоління відсутні. Аскомікотові та базидіомікотові мають переважно гаплофазні життєві цикли з зиготичною редукцією та чергуванням міцеліїв з одноядерними та дикаріонтичними клітинами. У частини хітридіомікотових грибів життєвий цикл гаплофазний з зиготичною редукцією та чергуванням одноядерного плазмодію з літніми цистами та дикаріонтичного плазмодію з зимовими цистами. У іншої частини представників цього відділу життєвий цикл диплофазний з гаметичною редукцією та неправильним чергуванням поколінь і без стадій дикаріонів. Для зигомікотових характерні гаплофазні життєві цикли з зиготичною редукцією та без зміни поколінь.

Часто один і той же гриб в життєвому циклі може мати декілька типів спороношення: нестатеве та статеве, які послідовно змінюють одне одного. Таке послідовне чергування анаморф та теломорф у грибів отримало назву плеоморфізму. Явище плеоморфізму широко представлено у грибів різних відділів, проте найбільшого розвитку воно отримало у аскомікотових.


8. Экология

Гриби зустрічаються у біотопах всіх типів. За середовищем існування гриби поділяють на наземні та водні (прісноводні та морські) гриби.

За трофічною приуроченістю до субстрату гриби поділяють на еколого-трофічні групи. У найзагальнішому випадку гриби поділяють на сапротрофів, паразитів та симбіотрофів. Сапроторофи отримують поживні речовини з мертвої органічної речовини, поселяючись на різноманітних рослинних та тваринних залишках і розкладаючи її. Гриби-паразити поселяються на інших організмах (рослинах, тваринах, інших грибах) і споживають органічну речовину господаря. Симбіотрофи отримують органічні речовини внаслідок симбіозу з іншими організмами (переважно вищими рослинами та водоростями), не завдаючи партнеру помітної шкоди, а навпаки, забезпечуючи його водою та мінеральними речовинами чи надаючи йому укриття.

Загально визнаними групами сапротрофів є, зокрема, гриби- ксилотрофи, які розвиваються на деревині, гумусні та підстилкові сапротрофи, що зростають у грунті або у лісовій підстилці, відповідно, копротрофи, що утилізують екскременти тварин, та ін.

Серед паразитичних грибів основними групами вважаються фітопатогенні гриби, які паразитують на вищих рослинах - фітотрофи, альготрофи, які живляться за рахунок водоростей, зоотрофи, що розвиваються на різноманітних тваринах (в межах цієї групи окремо виділяють ентомофільні гриби, що уражують комах), мікотрофи, що паразитують на інших грибах, а також гриби-паразити людини. За характером зв'язку з господарем гриби поділяють на факультативних та облігатних паразитів. Факультативні паразити для господаря є небезпечнішими від облігатних, оскільки спричинивши загибель господаря, продовжують свій розвиток, споживаючи його органічну речовину як сапротрофи. За топологією паразитичні гриби поділяють на внутрішньоклітинних та внутрішньотканинних паразитів.

Найбільш відомими та численими групами грибів-симбіотрофів є мікоризоутворюючі та ліхенізовані гриби. Перші розвиваються в ризосфері вищих рослин, утворюючи зовнішню (екторофні), внутрішню (ендотрофну) або змішану мікоризи. Ліхенізовані гриби живуть у симбіозі з мікроскопічними водоростями, і утворюють симбіотичні асоціації, відомі під назвою лишайників.

Існує ряд специфічних екологічних груп грибів, які розвиваються на різноманітних матеріалах, створених людиною: металах, пластмасах, полімерних плівках, тканинах, клею, гумових виробах, склі, лакофарбових покриттях, а також на папері, книгах, рукописах, картинах тощо, викликаючи їх псування або біологічне пошкодження.


9. Культивування грибів

Гливи ( Pleurotus), вирощені на середовищі із соломи та деревної стружки
Гриб Шітаке ( Lentinula edodes) між знімком зверху і знизу пройшло лише 24 години
Ферма з вирощування печериць ( Agaricus) в Угорщині

Гриби широко використовуються як харчовий продукт, не зважаючі на те, що їхні поживні властивості дуже малі. Але здебільшого гриби цінують не за поживність, а за аромат та за специфічний смак. В культурі, для задоволення потреб ринку, розводять сапротрофні шапинкові гриби, такі як печериця, опеньок, глива, шітаке. Ці гриби не потребують особливих умов, і дають врожай плодових тіл кожні 24-48 годин, що перетворює їхнє вирощування у дуже прибуткову справу.

Культивування мікоризотворних грибів видається неможливим, оскільки для них необхідне дерево - симбіонт, інакше ріст гриба та утворення плодових тіл не відбувається.

Для потреб лікеро-горілчаного, пивного та пекарського ринків культивують мікоскопічні пивні дріжджі, надзвичайно велику кількість штамів яких виведено методами селекції та генної інженерії. Кожен штам має окремі морфо-фізіологічні властивості, і під час бродіння виділяє у зовнішнє середовище, окрім звичайного етилового спирту та вуглекислого газу, низку специфічних речовин (цукрів, ферментів тощо), які надають кінцевій продукції особливого смаку та аромату. Наприклад, різні сорти пива отримують саме завдяки використанню різних штамів дріжджів.

Ще однією важлвою цариною застосування грибів є медицина. Тут декотрі гриби використовують для отримання біологічно-активних речовин (вітамінів, антибіотиків тощо). Перший антибіотик - пеніцилін - був виділений британським вченим Александером Флемінгом з гриба Пеніциліуму зеленуватого (Penicillium viridicatum), за що йому було присуджено Нобелівську премію в галузі фізіології та медицини.

Разом із корисними для людини способами використання грибів, поширюється й зловживання потенційно отруйними і галюциногенними грибами. Зокрема, значного розповсюдження набула практика нелегального культивування сапротрофних галюциногенних грибів з роду Псилоцібе (Psilocibe). Алкалоїд псилоцибін, при інтоксикації організму, викликає сильні процеси збудження у мозку людини, які призводять до виникнення яскравих і сюрреалістичних галюцинацій, проте, така практика є шкідливою. Вона призводить до руйнування синапсів та нейронів, окрім того це негативно впливає на кровоносну систему, клітини печінки, нирки та статеву систему. В останній, при дозріванні статевих продуктів можуть виникати різноманітні негативні мутації.

Настільною книгою "грибних" наркоманів став твір Кастанеди "Вчення дона Хуана", де розповідається, у дуже специфічному стилі, про досвід вживання галюциногенів у Мексиці та видіння і переживання, які вони спричинюють.


9.1. Їстівні гриби


9.2. Ядовитые грибы


10. Грибы в мифологии

В божественном происхождении грибов и в их связь с небом верили греки, римляне, китайцы, индусы, предки жителей Океании и африканские народы. У североамериканских индейцев до сих пор бытует поверье, что грибы пришли к нам из звезд. Жители многих континентов верили в то, что грибы рождаются от грома. Древнегреческое название одного из земляных грибов буквально означает "удар молнии", в китайском языке есть название, которое переводится как "гриб громового рокота". В Монголии до сих пор грибы называют "небесными плодами", а в Мексике потомки ацтеков - "божьим телом".

Изображение грибов, поедались при ритуальных обрядах, найденные на стенах храмов народов майя и в виде ритуальных статуэток, относятся к первому тысячелетию нашей эры.

Фантастические изображения человекоподобных мухоморов были найдены археологами среди наскальных изображений Чукотки.

Свойство некоторых грибов влиять на человеческую психику, видимо, давали основания для уверенности в том, что кто съел "волшебных грибов", знает больше, чем его соплеменники и действительно, может общаться с сверхъестественными силами.

Благодаря уникальным биосинтетическим способностям и продуктам метаболизма грибов, они могут иметь не малое значение в будущем, в частности в медицине и биотехнологии. Поэтому они должны существовать в легендах, мифах, фольклоре, иногда напоминая нам далекие времена " [6] Следующий пункт содержания: Грибы в космическое исследованиях (Х. П. Молиторис. Грибы в космических исследованиях. / / Украинский ботанический журнал)


код для вставки
Данный текст может содержать ошибки.

скачать

© Надо Знать
написать нам