Надо Знать

добавить знаний



Диэлектрическая проницаемость



План:


Введение

Диэлектрическая проницаемость (диэлектрическая постоянная) среды ε - безразмерная величина, характеризующая изоляционные свойства среды. Она показывает, во сколько раз взаимодействие между зарядами в однородной среде меньше чем в вакууме.


1. Физическая природа

Уменьшение силы взаимодействия между зарядами вызвано процессами поляризации среды. В электрическом поле электроны в атомах и молекулах смещаются относительно ионов, и возникает приведен дипольный момент. Те молекулы, которые имеют собственный дипольный момент (например, молекула воды), ориентируются в электрическом поле. Дипольные моменты создают свое электрическое поле, которое противодействует тому полю, что обусловило их появление. В результате суммарное электрическое поле уменьшается. При небольших полях такое уменьшение можно описать с помощью диэлектрической проницаемости.

Сильные электрические поля могут сильно изменить процессы, которые происходят в среде. Например, может наступить пробой. В таком случае понятие диэлектрической проницаемости теряет смысл.


2. Статическая диэлектрическая проницаемость

Диэлектрическая постоянная некоторых материалов при комнатной температуре
Материал Диэлектрическая постоянная
Вакуум 1 (по определению)
Воздуха 1.0005
Бумага 3
Резина 7
Метиловый спирт 30
Вода 80
Титанат бария 1200

При рассмотрении неизменных со временем электрических полей вводят понятие статической диэлектрической проницаемости. Статическая диэлектрическая проницаемость устанавливает связь между вектором электрической индукции \ Mathbf {D} и напряженностью электрического поля \ Mathbf {E} . Всего направления этих векторов не совпадают, поэтому диэлектрическая проницаемость является тензорной величиной.

\ Mathbf {D} = \ hat {\ varepsilon} \ mathbf {E} .

Формула записана в системе СГС.

В системе СИ вектор электрической индукции и напряженность электрического поля имеют разную размерность, поэтому \ Hat {\ varepsilon} нужно еще додатоково умножить на определенный коэффициент преобразования до других единиц ε 0, который теперь официально называют электрической постоянной а раньше называли диэлектрической проницаемостью вакуума.

\ Mathbf {D} = \ hat {\ varepsilon} _r \ varepsilon_0 \ mathbf {E} .

Для изотропных сред, в которых нет выделенного направления, тензор диэлектрической проницаемости имеет диагональную форму и характеризуется одним характерным для среды числом, который называют диэлектрической постоянной среды. Соответственно, в СИ \ Hat {\ varepsilon} _r называют относительной диэлектрической проницаемостью.

Относительная диэлектрическая проницаемость ε r может быть определена путем сравнения электрической емкости тестового электрического конденсатора с определенным диэлектриком (C x) и емкости того же конденсатора в вакууме (C o):

\ Varepsilon_ {r} = \ frac {C_ {x}} {C_ {0}}.

3. Диэлектрическая функция

Физическая картина, которая лежит в основе отклика (реакции) среды на переменное электрическое поле, имеет существенно иной характер. Внешнее электрическое поле вызывает смещение зарядов и образование приведенных дипольных моментов, но этот процесс отстает от изменения внешнего поля. В таком случае, электрическое поле создано приведенными дипольными моментами, зависит от того, каким было внешнее электрическое поле в предшествующие моменты времени.

Учитывая отставание отзыва среды от изменения поля, для поляризации \ Mathbf {P} можно записать [1]

\ Mathbf {P} = \ int_ {- \ infty} ^ t \ hat {\ alpha} (tt ^ \ prime) \ mathbf {E} (t ^ \ prime) dt ^ \ prime .

В таком случае можно ввести зависящую от частоты наружной электромагнитной волны диэлектрическую проницаемость \ Hat {\ varepsilon} (\ omega) , Которая связывает между собой векторы электрической индукции и напряженности электрического поля электромагнитной волны с частотой ω.

\ Mathbf {D} (\ omega) = \ hat {\ varepsilon} (\ omega) \ mathbf {E} (\ omega) .

Зависящую от частоты диэлектрическую проницаемость часто называют диэлектрической функцией. Она связана с зависимой от частоты поляризовнистю \ Hat {\ alpha} соотношением

\ Hat {\ varepsilon} (\ omega) = 1 + 4 \ pi \ hat {\ alpha} (\ omega).

Приведенный связь справедлив только для слабых полей, когда нелинейные эффекты не играют большой роли.

Диэлектрическая функция целом комплексной величиной, т.е. имеет действительную и мнимую слайд. Обычно их обозначают \ Varepsilon ^ \ prime и \ Varepsilon ^ {\ prime \ prime} .

\ Varepsilon (\ omega) = \ varepsilon ^ \ prime (\ omega) + i \ varepsilon ^ {\ prime \ prime} (\ omega)

Если действительная составляющая диэлектрической проницаемости аналогичная диэлектрической постоянной, описывая обусловлено поляризацией уменьшения электрического поля в веществе, то мнимая часть описывает токи, возникающие в веществе в переменном электрическом поле. Диэлектрики, которые не проводят постоянного тока, могут проводить переменные токи, связанные с периодическим смещением связанных электронов относительно ядер.

В оптическом диапазоне действительно составляющая диэлектрической проницаемости связана с показателем преломления, а мнимая часть - с затуханием света. Мнимая часть диэлектрической функции всегда положительная для среды, которое поглощает свет

\ Varepsilon ^ {\ prime \ prime}> 0 .

Отрицательные значения мнимой составляющей диелктричнои проницаемости возникают лишь для очень неравновесных сред, в которых возможно усиление света (см. лазер).

Всего принцип причинности накладывает определенные ограничения на возможные значения действительной и мнимой составляющих диэлектрической проницаемости, которые задаются соотношениями Крамерса-Кронига.


3.1. Низкие частоты

На низких частотах диэлектрическая проницаемость веществ близка к диэлектрической постоянной. Однако необходимо учитывать тот факт, что реальные диэлектрики хотя бы частично проводят электрический ток. Для вещества с проводимостью σ диэлектрическая проницаемость на частоте ω равна

\ Varepsilon (\ omega) = \ varepsilon_ {st} + \ frac {4 \ pi \ sigma i} {\ omega} ,

где c - скорость света, \ Varepsilon_ {st} - Диэлектрическая постоянная.

Для проводников второй член большой благодаря большому значению проводимости. Существованием этого члена объясняется скин-эффект - частичное проникновения электрического поля в проводник.


3.2. Высокие частоты

При очень высоких частотах диэлектрическая проницаемость ведет себя одинаково для проводников и диэлектриков. Это поведение описывается формулой

\ Varepsilon (\ omega) = 1 - \ frac {4 \ pi Ne ^ 2} {m \ omega ^ 2} ,

где N - общее количество электронов во всех атомах единице объема m - масса электрона, e - его заряд.

Отсюда видно, что \ Varepsilon \ rightarrow 1 при \ Omega \ rightarrow \ infty .


4. Диэлектрическая проницаемость и показатель преломления

Диэлектрическая функция в оптическом частотном диапазоне связана с показателем преломления света спиввидношеннням:

\ Varepsilon (\ omega) = (n + i \ kappa) ^ 2 \ ,

где n - показатель преломления, κ - коэффициент затухания света.

В случае, когда затухание мало (свет распространяется в прозрачной среде),

\ Varepsilon = n ^ 2 \ .

Примечания

  1. В этом разделе формулы записаны в СГС Г

код для вставки
Данный текст может содержать ошибки.

скачать

© Надо Знать
написать нам