Надо Знать![]() | ПрямаяПлан:ВведениеПрямая - одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенно определяется аксиомами геометрии. Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, путь вдоль которой равен расстоянию между двумя точками. 1. Алгебраическое определениеПрямая линия - алгебраическая линия первого порядка: в декартовой системе координат прямая линия задается на плоскости уравнением первой степени ( линейное уравнение): где Зато, Каноническое уравнение прямой, вытекает из предыдущего имеет вид линейной функции :
Прямая (а также пара пересекающихся прямых) является вырожденным примером конического сечения. 1.1. В n-мерном пространстве Пусть задан вектор
называется прямой в пространстве Часть прямой, соответствует изменению параметра Если заданы две точки
2. Обобщенное определение Прямой в аффинном пространстве Таким образом, произвольная прямая в пространстве 3. Свойства Прямая Если прямая Если три плоскости попарно пересекаются и не имеют общей прямой, то линии их пересечения или параллельные или имеют общую точку. [4] Примечания
См.. также
код для вставки Данный текст может содержать ошибки. скачать |